Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

(Z)-2-(3-Methoxybenzylidene)-1-aza-bicyclo[2.2.2]octan-3-one

Vijayakumar N. Sonar, ${ }^{\text {a }}$ Sean Parkin ${ }^{\text {b }}$ and Peter A. Crooks ${ }^{\text {a }}$ *

${ }^{\text {a D Department of Pharmaceutical Sciences, College of Pharmacy, University of }}$ Kentucky, Lexington KY 40536, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Kentucky, Lexington KY 40536, USA
Correspondence e-mail: pcrooks@uky.edu

Received 18 August 2005
Accepted 26 September 2005
Online 22 October 2005
The crystal structure of the title compound, $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$, contains two nearly identical but crystallographically independent molecules, each with a double bond connecting an azabicyclic ring system to a 3-methoxybenzylidene moiety. The space group is triclinic $P \overline{1}$. The benzene ring is twisted by 18.44 (5) and 22.35 (4) ${ }^{\circ}$ with respect to the plane of the double bond connected to the azabicyclic ring system for the two molecules. In addition to $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, molecules are held together in the solid state by van der Waals interactions.

Comment

1-Azabicyclo[2.2.2]octane ring systems linked to five- or sixmembered heteroaromatics are known to be muscarinic agonists (Nilsson et al., 1995). Also, the 5-HT-3 receptor antagonist zacopride contains a 1-azabicyclo[2.2.2]octane moiety (Paulis et al., 1997). In continuation of our work with 1-azabicyclo[2.2.2]octan-3-ones as precursors of medicinal agents, we synthesized a series of 2-(substituted benzylidene/ hetero-3-arylmethylene)-1-azabicyclo[2.2.2]octan-3-ones (Sonar et al., 2004), and their crystal structures were determined in order to confirm the geometry and to establish the conformations of the molecules. The title compound, (I), was prepared by condensation of 3-methoxybenzaldeyde with 1-azabicyclo[2.2.2]octan-3-one under base catalysis, to afford a single geometrical isomer, viz. (Z)-2-(3-methoxybenzyli-dene)-1-azabicyclo[2.2.2]octan-3-one. In order to confirm the geometry of this compound, and to obtain more detailed information on the structural conformation of the molecule, its X-ray structure determination has been carried out and the results are presented here.

The asymmetric unit of (I) contains two independent molecules, A and B (Fig. 1), with very similar geometries (Table 1). The molecule contains a double bond between atoms C7 and C8 that connects a 1-azabicyclo[2.2.2]octan-3-one ring system to a 3-methoxybenzylidene group, and has a Z geometry in which the $\mathrm{C} 1-\mathrm{C} 7$ bond is in the trans position with respect to the $\mathrm{C} 8-\mathrm{C} 9$ bond. The $\mathrm{C} 7=\mathrm{C} 8$ bond is essentially planar,
since the r.m.s. deviations from the mean planes passing through atoms $\mathrm{N} 1, \mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 7$ and C 1 are 0.0270 (5) and $0.0060(5)^{\circ}$ for molecules A and B, respectively.

(1)

Deviations from ideal geometry are observed in the bond angles around atoms $\mathrm{C} 1, \mathrm{C} 7, \mathrm{C} 8$ and C 9 . While the $\mathrm{C} 7=\mathrm{C} 8-$ C9 angle [121.27 (7) ${ }^{\circ}$ in A and $121.07(7)^{\circ}$ in $\left.B\right]$ is close to the ideal angle of 120°, the $\mathrm{C} 2=\mathrm{C} 1-\mathrm{C} 7, \mathrm{C} 1-\mathrm{C} 7=\mathrm{C} 8, \mathrm{~N} 1-$ $\mathrm{C} 8=\mathrm{C} 7, \mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$ and $\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$ angles [124.25 (7), 130.35 (8), 125.30 (8), 110.88 (7) and 113.24 (7) ${ }^{\circ}$ in molecule A, and 123.93 (7), 130.65 (8), 125.36 (8), 110.59 (7) and 113.54 (7) ${ }^{\circ}$ in molecule B, respectively] are more distorted, a consequence of the strain induced by the double-bond linkage at atoms C8 and C9. These deviations in the angles contribute to the release of the intramolecular non-bonded interactions within the 1 -azabicyclo[2.2.2]octane ring. In both cases, Csp ${ }^{2}$ atoms replace Csp ${ }^{3}$ atoms and, as a result, atoms $\mathrm{N} 1, \mathrm{C} 8, \mathrm{C} 9$ and C 10 assume a planar configuration [the $\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9-$ C 10 torsion angle is $-4.81(9)^{\circ}$ in A and $-0.55(9)^{\circ}$ in $\left.B\right]$, with partial conjugation between the double bond and the carbonyl group, as indicated by the significant shortening of the $\mathrm{C} 8-\mathrm{C} 9$ single bonds [1.4807 (12) \AA in A and 1.4883 (12) \AA in B]. The values of the $\mathrm{C} 2=\mathrm{C} 1-\mathrm{C} 7=\mathrm{C} 8$ torsion angles $\left[-19.25(13)^{\circ}\right.$ in A and $-21.74(13)^{\circ}$ in B] indicate a deviation of the benzene ring from the plane of the double bond connected to the azabicyclic ring. The observed $\mathrm{O} 2-\mathrm{C} 5[1.3710$ (10) \AA in A and 1.3762 (10) \AA in $B]$ and $\mathrm{O} 2-\mathrm{C} 15[1.4287$ (11) \AA in A and 1.4255 (11) \AA in B] bond lengths are comparable to values found for aromatic methoxy groups in the literature (Domiano et al., 1979).

In addition to the $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction shown in Fig. 1 $(\mathrm{H} 12 C \cdots C g=2.80 \AA, \mathrm{C} 12 B \cdots C g=3.701 \AA$ and $\mathrm{C} 12 B-$ $\mathrm{H} 12 C \cdots C g=154^{\circ} ; C g$ is the centroid of the $\mathrm{C} 1 A-\mathrm{C} 6 A$ ring $)$, molecules are held together in the solid state by van der Waals interactions.

A view of the two independent molecules of the title compound, A and B, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Experimental

A mixture of 3-methoxybenzaldehyde $(0.409 \mathrm{~g}, 3 \mathrm{mmol})$ and 1-aza-bicyclo[2.2.2]octan-3-one hydrochloride ($0.483 \mathrm{~g}, 3 \mathrm{mmol}$) was dissolved in 10% methanolic $\mathrm{KOH}(10 \mathrm{ml})$ and the solution was refluxed for 5 h . The cooled reaction mixture was poured onto crushed ice (100 g), and the yellow solid that separated was collected by filtration and dried. Recrystallization from ethyl acetate afforded (I) as a yellow crystalline product suitable for X-ray analysis. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.03(t d, J=7.95$ and $2.7 \mathrm{~Hz}, 4 \mathrm{H}), 2.63(p$, $J=3 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-3.06(m, 2 \mathrm{H}), 3.12-3.22(m, 2 \mathrm{H}), 3.83(s, 3 \mathrm{H}), 6.91$ $(d d, J=8.25$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(s, 1 \mathrm{H}), 7.29(t, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ $(d, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(q, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 26.2,40.5,47.7,55.5,115.5,117.2,125.1,125.1,129.4,135.3$, 145.0, 159.4, 206.4.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$
$M_{r}=243.30$
Triclinic, $P \overline{1}$
$a=5.8860$ (2) \AA 。
$b=10.4741$ (4) \AA
$c=20.2724(8) \AA$
$\alpha=81.090$ (2) ${ }^{\circ}$
$\beta=89.223(2)^{\circ}$
$\gamma=80.845(2)^{\circ}$
$V=1218.92(8) \AA^{3}$
$Z=4$
$D_{x}=1.326 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 6692 reflections
$\theta=1.0-68.0^{\circ}$
$\mu=0.70 \mathrm{~mm}^{-1}$
$T=90.0$ (2) K
Plate fragment, yellow
$0.15 \times 0.05 \times 0.03 \mathrm{~mm}$

Data collection

Bruker-Nonius X8 Proteum diffractometer
ω and φ scans
Absorption correction: multi-scan
(TWINABS; Bruker-Nonius, 2004)
$T_{\text {min }}=0.803, T_{\text {max }}=0.979$
13961 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.114$
$S=0.97$
13961 reflections
351 parameters
Only H -atom coordinates refined

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

$\mathrm{N} 1 A-\mathrm{C} 8 A$	$1.4443(10)$	$\mathrm{N} 1 B-\mathrm{C} 8 B$	$1.4465(10)$
$\mathrm{N} 1 A-\mathrm{C} 14 A$	$1.4782(11)$	$\mathrm{N} 1 B-\mathrm{C} 14 B$	$1.4803(11)$
$\mathrm{N} 1 A-\mathrm{C} 12 A$	$1.4807(11)$	$\mathrm{N} 1 B-\mathrm{C} 12 B$	$1.4827(10)$
$\mathrm{O} 1 A-\mathrm{C} 9 A$	$1.2261(10)$	$\mathrm{O} 1 B-\mathrm{C} 9 B$	$1.2230(10)$
$\mathrm{O} 2 A-\mathrm{C} 5 A$	$1.3710(10)$	$\mathrm{O} 2 B-\mathrm{C} 5 B$	$1.3762(10)$
$\mathrm{O} 2 A-\mathrm{C} 15 A$	$1.4287(11)$	$\mathrm{O} 2 B-\mathrm{C} 15 B$	$1.4255(11)$
$\mathrm{C} 7 A-\mathrm{C} 8 A$	$1.3426(12)$	$\mathrm{C} 7 B-\mathrm{C} 8 B$	$1.3431(12)$
$\mathrm{C} 5 A-\mathrm{O} 2 A-\mathrm{C} 15 A$	$116.68(6)$	$\mathrm{C} 5 B-\mathrm{O} 2 B-\mathrm{C} 15 B$	$116.86(7)$
$\mathrm{O} 2 A-\mathrm{C} 5 A-\mathrm{C} 6 A$	$115.62(7)$	$\mathrm{O} 2 B-\mathrm{C} 5 B-\mathrm{C} 6 B$	$115.35(7)$
$\mathrm{O} 2 A-\mathrm{C} 5 A-\mathrm{C} 4 A$	$124.12(8)$	$\mathrm{O} 2 B-\mathrm{C} 5 B-\mathrm{C} 4 B$	$124.21(8)$
$\mathrm{O} 1 A-\mathrm{C} 9 A-\mathrm{C} 8 A$	$124.99(7)$	$\mathrm{O} 1 B-\mathrm{C} 9 B-\mathrm{C} 8 B$	$125.02(7)$
$\mathrm{C} 2 A-\mathrm{C} 1 A-\mathrm{C} 7 A-\mathrm{C} 8 A$	$-19.25(13)$	$\mathrm{C} 2 B-\mathrm{C} 1 B-\mathrm{C} 7 B-\mathrm{C} 8 B$	$-21.74(13)$
$\mathrm{C} 1 A-\mathrm{C} 7 A-\mathrm{C} 8 A-\mathrm{C} 9 A-174.31(7)$	$\mathrm{C} 1 B-\mathrm{C} 7 B-\mathrm{C} 8 B-\mathrm{C} 9 B$	$179.61(7)$	
$\mathrm{C} 7 A-\mathrm{C} 8 A-\mathrm{C} 9 A-\mathrm{O} 1 A$	-8.26 (13)	$\mathrm{C} 7 B-\mathrm{C} 8 B-\mathrm{C} 9 B-\mathrm{O} 1 B$	-1.78 (12)

program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL/PC (Sheldrick, 1995); software used to prepare material for publication: SHELXL97 and local procedures.

This investigation was supported by National Institute of Alcohol Abuse and Alcoholism grant No. AA12600. The purchase of a rotating-anode-based CCD diffractometer system was made possible by the NSF MRI program (grant No. 0319176).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA1156). Services for accessing these data are described at the back of the journal.

References

Bruker-Nonius (2004). APEX2, SAINT-Plus and TWINABS. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.
Domiano, P., Nardelli, M., Balsamo, A., Macchia, B. \& Macchia, F. (1979). Acta Cryst. B35, 1363-1372.
Nilsson, B. M., Sundquist, S., Johansson, G., Nordvall, G., Glas, G., Nilvebrant, L. \& Hacksell, U. (1995). J. Med. Chem. 38, 473-487.

Paulis, T., Hewlett, W. A., Schimidt, D. E., Mason, N. S., Trivedi, B. L. \& Ebert, M. H. (1997). Eur. J. Med. Chem. 32, 385-396.

Sheldrick (1995). XP in SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sonar, V. N., Parkin, S. \& Crooks, P. A. (2004). Acta Cryst. C60, o659-o661.

